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Dynamics has been examined of the concentration profile in a reactor simulated by the stage­
wise model under the isothermal conditions. Appropriate set of nonlinear differential equa­
tions has been solved iteratively using the Newton-Raphson method. Computed results have 
been compared with experimental data. 

The behaviour ofliquid flow in a rotating disc reactor (RD reactor) may be simulated 
by several models l

- 3 . A very frequently used model is the dispersion model and the 
model of a cascade of N perfect mixers with back flow. The dispersion models , used 
predominantly in connection with packed bed reactors, describe the behaviour 
of the reactor by partial differential equations 1

,3. In contrast, reactors simulated 
by the cascade of N perfect mixers with back flow may be described by ordinary 
differential equations. 

In this paper attention shall be paid to the transient state of the reactor simultated 
by N perfect mixers with back flow. This model, equally as some other models, 
permits simulation of the reactor behaviour over a relatively wide interval. Provided 
that the number of reactors in the cascade, N, equals unity, the model reduces to a per­
fectly stirred reactor, while for N growing to infinity with the back flow remaining 
finite, the model represents the plug flow . In practice it is often important to know 
concentration and/or temperature variations in response to a step change of the 
properties of the inlet stream. In order to predict these variations, one must have 
an adequate model and solve corresponding equations based on this model. In case 
that the reaction taking place in the reactor cannot be described by a linear reaction 
rate equation, the transient development of the concentration and/or temperature 
profile cannot be obtained in the closed form. For this reason this paper presents 
numerical solution by the Newton-Raphson method. As to the convergence this 
is a second order method. The computational procedure utilizing the Newton-Raph­
son method may be summarized in three steps. In the first step, the nonlinear terms 
are linearized by the quasi-linearization technique. Next, the linear equations are 
written in the form of the finite difference method and, finally, the obtained dif­
ference equations are solved iteratively. 

Collection Czechoslov. Chern. Commun. [Vol. 45] [19801 



998 Kosuth, I1avsky : 

THE MODEL OF THE CASCADE of N PERFECT MIXERS WITH BACK FLOW 

Isothermal Conditions 

In this part the Newton-Raphson method is applied to the set of equations describing 
the transient state of an isothermal continuous reactor. 

Consider the cascade of N perfect mixers with back flow as sketched in Fig. 1 
and the reaction 

(A) 

A + B R + s. (B) 

This reaction has been known as saponification of ethyl acetate. It is a second-order 
irreversible reaction with no side products. The kinetics of the reaction (A) may be 
expressed by an elementary bimolecular irreversible reaction rate equation for which 
we may write (A designates sodium hydroxide, B ethyl acetate) 

(1) 

The effect of temperature on the reaction rate constant has been studied by Warder5,­
who recommends the following numerical constants for the Arrhenius equation 

In kv = 16·47 - (5636·63/T). (2) 

The set of equations describing the response to a step change at the reactor inlet 
for the reactant A (the concentrations of reactants A and B need not be generally 

FIG. 1 

Scheme of a Cascade of N Perfectly Mixed Cells with Back Flow 
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the same) in the dimensionless form reads as follows 

j = ° 

j = N + 1 

where 

v(e) = (1 + 13) CAO - CAl 

r = Viii e = tlr, 

when 

when 

e;:;; 0, 

e < 0. 

999 

(3) 

(4) 

(5) 

(6) 

Both end, so-called fictious, stages account for the concentration steps at the reactor 
inlet and the outlet, for they represent mixing of the feed stream with the internal 
back flow and their volume is negligible. On expressing the relationship between the 
dimensionless concentration of species A and Busing 

by the relationship 

the set of Eqs (3)-(5) may be simplified and rewritten into the form 
j = 1 

( ( I ) 1 dCAI 
1 - 1 + 13) CAl - D. CAl CAl - 1 + CBvs CAys + 13 C A2 = - -­

N de 

2~j~N-1 

j=N 

(1 + 13) C Aj - 1 - (1 + 213) C Aj - Da CAl C Aj - 1 + cBvs/cAvs) + 

+ 13 C
A

.+
1 

= ~ dCAj 

J N de 
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(1 + (3) CAN - 1 - (1 + (3) CAN - D. CAN(CAN - 1 + CDvs/CAv.) = 

= ! dCAN 
N de 

(11) 

Let us assume that the initial concentration profile of species A in the cascade 
at the time t = 0 is CAinitj = 0, j = 1,2, ... , N. The initial condition in the dimen­
sionless form may then be written as 

C Aj = CAinitj = 0 when e = 0 for 1;;:; j ;;:; N. (12) 

The set of Eqs (9)-(11) represents a nonlinear set of differential equations whose 
nonlinear terms may be represented by the expression 

(13) 

obtained as a Taylor expansion after neglecting the terms of the order higher than the 
first. 

Let the derivatives be replaced by the difference operator as follows 

(14) 

where CA(n) designates the values of the vector CA at the time instant n Ae. Th~ ­
symbol k refers to the iterative step and Ae stands for the length of the time step. 

The vector C~ may be replaced by one of the two following relationships 

C~ = C~( n + 1) . 

(15) 

(16) 

After substituting Eqs (12) - (15) into (9) - (11), a set of N linear simultaneous 
equations is obtained 

( 17) 

(18) 
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[

Da[ -t[C~l(n + 1) + CA1(n)]2] - IJ 
B = ~a[ -t[C~2(n + 1) + CA2(n)]2] 

Da[ -t]CAN(n + ) + CAN(n)]2] 

j = I,N 

j = 2, 3, ... , N - 1 . 

1001 

(19) 

(20) 

(21) 

(22) 

(23) 

In the above Eq. (17), C~;I(n + 1) for j = 1,2, ... , N is an unknown variable. 
If it is assumed that values of CAin) for j = 1,2, .. . , N at the n-th time step are 
known then its values at the (n + 1)-th step may be computed as follows: 

1) estimate values C~jO(n + 1), j = 1,2, ... , N 

2) calculate C~;\n + 1), j = 1,2, ... , N form Eq. (17) 

3) if the following condition 

IC~rl(n + 1) - C~ln + 1)1 ~ e for j = 1,2, . .. , N (24) 

is fulfilled, terminate the calculation. If the inequality (24) is false put k = k + 1 
and return to 2). 

In the first time step we used a following starting values C~=O(n + 1) = 0·001. 
For time steps other than I-st (n = 2,3, . .. ), the starting values of the concentration 
were those found in the previous time step, CA(n). For convergence reasons the value 
taken in the k-th iteration was the mean given by Eq. (15). 

Collection Czechoslov. Chern. Cornmun. [Vol. 45] [1980] 



1002 Kosuth, Ilavsky : 

The computation of the dynamics of the concentration profile has been performed 
on a STMENS 4004/150 computer for the following input data: 

N 

P 
lle 

= 40 
= 0·281 
= 0·05 

CAinitj=O; e=o, 
e = 10,-6 

CAvs = 0·01965 [mol/I] 
cBvs = 0·01973 [mol /I] 
V = 0·80 [ljmin] 

1 ~ j ~ N V = 1·698 [I] 
T = 312'0 [K] 

cp =4144·93 [Jkg -I K- I] 

The results are shown in Fig. 2. 

Adiabatic Conditions 

Let us assume that the conditions summarized in the above paragraphs have 
been fulfilled and that there is an elementary irreversible second-order reaction 
(Eq. (A)) taking place in the reactor under the adiabatic regime. At the time instant 
t = 0 the reactor is at the initial temperature profile, ~nilj for j = 1,2, ... , N, and 
for the subsequent time instants the inlet temperature is maintained at T ... 

Under these assumptions the mass and energy balance of the reactor in the tran­
sient state simulated by the stagewise model with back flow, Fig. 1, may be written as: 
j = 1 

1 - (1 + P) CAl - D~ CAI(CAI - 1 + CBvs/CAVs) exp (- EIRTI) + 

+ f3 C A2 = ~ dCAI 

N de 

2~j~N-l 

j=N 

j = 1 

(25) 

(26) 
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Tvs - (1 + p) Tl - Q CA1(CA1 - 1 + CBvs!CAVS) exp (-E/RTj ) + 

! dTI 

N de 

2;£j;£N-1 

1003 

(28) 

(1 + f3) Tj - 1 - (1 + 2f3) Tj - Q CAiCAj - 1 + CBvs/CAVS) exp (-E/R1j) + 

j=N 

+f3T
j
+

1 
=!dTj 

Nde 

(1 + f3) TN - 1 - (1 + f3) TN - Q CAN(CAN - 1 + CBvs/CAvs) exp (-E/RTj = 

=! dTN 

where 

0·5 

o 

FIG. 2 

0·2 0;-
o 

o 

N de 

20 -40 o 20 

FIG . 3 

(29) 

(30) 

-40 

Dynamics of the Concentration Profile - Iso­
thermal Conditions 

Dynamics of the Concentration Profile -
Adiabatic Conditions and Experimental Con­
centration Profile 

o Model, • experiment. 
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The symbols E and R designate the activation energy and the universal gas constant. 
The initial conditions read: 

CAl = CAlnit) when e = 0 for 1 ~ j ~ N, 

1] = T init ) when e = 0 for 1 ~ j ~ N . 

The nonlinear terms in Eqs (25)-(30) may be linearized summarily 

where 

(3Ia) 

(3Ib) 

Ft(CA , T) = D~ CA(CA - 1 + CBys/CAys) exp (-E/RT), (33) 

F2(CA , T) = Q CA(CA - 1 + CBys/cAY.) exp (-E/RT) . (34) 

The vector Tk is replaced by the relationship 

Tk = t[Tk(n + 1) + T(n)] . (35) 

On replacing the derivatives by the difference operators of the type (14) and on sub­
stituting from Eqs (15)-(35) into (25)-(30) the following iteration formulas result: 

in which the matrices At, A2 are tridiagonal ones and take identical form as the 
-matrix A with the elements 

j = I,N 

al) = - {I + P + D~ exp {-2EfR[Tj
k(n + 1) + 1](n)]} . 

. [C~ln + 1) + CAin) + CBYs/CAYS - 1] + _1_} 
. . N llB 

(38) 
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b1j = - {I + 2f3 + D~ exp {-2EjR[TJ(n + 1) + 7](n)]} . 

. [C~in + 1) + CAin) + CBvsjCAvs - 1] + _ 1_ } (39) 
N fle 

j = 2, 3, .. . , N - 1 

a2 j = - {1 + f3 + Q exp {-2EjR[lj\n + 1) + Tin)]} . 

. 2E[C~j(n + 1) + CAin)J . ([Ck .(n + 1) + C .(n)J/2 + (c Ic ) _ 1) + _ 1_} 
R[Tjk(n + 1) + 7](n))2 AJ AJ Bvs Avs N fle 

(40) 

j = I , N 

b2j = - {1 + 2f3 + Q exp {-2EjR[Tjk(n + 1) + Tln)]} . 

. 2E[C~j(n + 1) + CAj(n)J . ([Ck .(n + 1) + C .(n)]/2 + (c /c ) _ 1) + _ 1_} 
R[Tj\n + 1) + Tln))2 AJ AJ Bvs Avs N fle 

j = 2, 3, .. . , N - 1 

and matrices VI' V2 , EI , E2 contain the elements on the main diagonal only 

Vlj = D~ exp {-2E/R[TJ(n + 1) + 7](n)]} . 

2E[C~ln + 1) + CAin)J 
. R[TJ(n + 1) + Tln)]2 . 

(41) 

. ([C~ln + 1) + CAln)]/2 + cBvs/cAvs) - 1) j = 1,2, .. . , N (42) 

V2j = Q exp {-2EIR[Tr(n + 1) + 7](n)]} . 

. (C~in + 1) + CAin) + CBvsjCAvs - 1) j = 1,2, .. . , N (43) 

elj = -D? exp {-2EIR[Tr(n + 1) + 7](n)]} . 

. {~[Ck.(n + 1) + C .(~)]2 + E[C~in + 1) + CAln)J . 
4 AJ AJ R[Tjk(n + 1) + 7](n)J 
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The elements e2j , j = 2, ___ , N are the same as ell' j = 2, __ _ , N except that instead 

of D~ there is a symbol Q and for e2 j = 1 we write 

Let there be a functional 

C~+l(n + 1) = C~(n + 1)_ 

The set of Eqs (36) and (37) may then be rewritten into the form 

(45) 

(46) 

while each of the set ofEqs (47) and (48) may be solved separately_ The computational 
procedure is analogous as in the previous case and it was performed on the Siemens 
4004/150 computer. For the initial temperature profile we took the temperature 
of the feed reactants , Tv. = 312-0 K _ As inputs we took the following numerical 
values 

N = 40 
P = 0-281 
Ae = 0-05 

CAinitj = 0; e = 0, 1 ~ j ~ N 
B = 10- 6 

Tinitj = Tv.; e = 0 , 1 ~ j ~ N 
Cp =4144-93 [Jkg-IK- I] 

CAvs = 0-01965 [mol /I] 
cBv• = 0-01973 [mol/I] 
V = 0-80 [l/min] 
V = 1-698 [I] 
Tv. = 312-0 [K] 
k~ = 8-531 _108 [I mol-l min-I] 
(] = 0-993 [kg 1-1] 

The results of the calculated concentration and temperature profile under the 
adiabatic conditions are shown in Fig_ 3 and 4_ 
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On the model RD reactor, described in detail in ref. 4
, we obtained experimentally 

the steady state residence time distribution function , the so-called E-curve, and the 
concentration profile of sodium hydroxide. Values of model parameters of the cascade 
of N perfectly mixed reactors N = 40 and f3 = 0·281, which had been used in the 
computational runs, were identified on the basis of comparison of the experimental 
and theoretical E-curves. The method used has been described in ref.4. Graphical 
illustration of both the experimental and theoretical E-curves is furnished in Fig. 5; 
the experimentally found concentration profiles together with the dynamics of the 
concentration profile under the adiabatic conditions is shown in Fig. 3. 

From comparison of the experimentally obtained functions with the computed 
ones in Figs 3 and 5 there follows that the applied model of the cascade of N perfectly 
mixed reactors with back flow provides excellent description of the reactor response 
to an impulse. Moreover, it yields good results even in terms of reactor productivity 
and this is so even when the undergoing reaction exhibits nonlinear kinetics. The 
above model has been used for the calculation of the dynamics of the concentration 
and temperature profiles under isothermal and adiabatic conditions. 

Steady state under the isothermal conditions was reached at the time e = 2·8, 
(Fig. 2) . In ref. 4 equations have been also solved describing the steady state under 

K 

FIG . 4 

o 
o 

o 

Dynamics of the Temperature Profile -
Adiabatic Conditions 
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Experimental and Model Residence Time 
Distribution Function 

- - - Model, --- experiment. 
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the isothermal conditions of the reactor simulated by the cascade of N perfect mixers 
with back flow and the obtained results are identical those presented in Fig. 2 for 
e = 2·8. This confirms correctness of the present solution of the underlying equa­
tions describing the transient state of the reactor. 

As expected, under the adiabatic conditions the reactor reaches steady state later, 
namely at the time e = 3'2, see Fig. 3. Fig. 4 confirms the well-known fact that 
in the transient state a greater temperature variations may occur in the reactor in com­
parison with the steady state. A comparison of Figs 2 and 3 indicates that the tem­
perature changes, occurring during adiabatic operation, Tmax = O·soC, have a negli­
gible effect. For this case, which though is not typical, the problem of the dynamics 
-of the concentration profile simplifies and one may consider only isothermal condi­
tions. 

The Newton-Raphson technique as a second-order method, in its application 
to solving sets of nonlinear differential equations, offers considerable advantages. 
It yields accurate results while it does not require excessive computer time. The first 
time step required 18 iterations and this number rapidly decreased to 4- 6 iterations. 

With these advantages it may be stated that this method may find wide use in sol­
ving equations describing the simulated reactor in the transient state for control 
purposes or reactor start-up. 
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A 

Cp 

C 

c= c/cvs 

C 

Da,D~ 
e 1, e2 

E = 46892 

E1, E2 

k~ 
k, 

N 

Q 
R 

T 
T 

elements of matrices 
reactant 
matrices 
element of matrix 
reactant 
vector 
specific heat capacity (J kg - 1 K - 1) 

concentration (mol /I) 
relative concentration 
vector of concentrations 
Damkoehler number 
elements of matrices 
activation energy (J /mol) 
matrices 
frequency factor (I mol- 1 min - 1) 

reaction rate constant under isochoric conditions (1 mol- 1 min - 1) 

time step 
numer of mixers 
a quantity characterizing reaction rate 
gas constant (J mol- 1 K -1) 

time (min) 
absolute temperature (K) 
temperature vector 
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uee) 
V I' l.'2 

V 

V 
V' 

unit function 
elements of matrices 
reactor volume (I) 
volume flow rate (l /min) 
back flow volume rate (I/min) 

V I ' V 2 matrices 
/3 = V' / V ratio of back flow to forward flow 
!1H = - 711 76 reaction heat (1 /mol) 
!1e time step 

e 

Subscripts 

A 
j 
k 
init 
vs 
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